
U.S. Department of the Interior 

U.S. Geological Survey 

Lake Erie HABs and Hypoxia: 

 
Effects of Nutrient Loading and 

Changing In-Lake Dynamics 

Mary Anne Evans and Ed Roseman 

 

USGS– Great Lakes Science Center 

  



Four goals 

 An organizing method for scientific 

information 

 

 Both in lake and external loading changes 

matter 

 

 Form of phosphorus matters 

 

 Multiple causes and multiple effects must be 

considered to understand the system 



Context 

 Problems often have multiple causative steps 
between factors we can control and 
outcomes we care about 

 

 More steps for economic costs of control 
attempts, outcomes, or both 

 

 Controls, outcomes, and costs can be 
dispersed in space and time, making the links 
hard to think about 



One solution: graphical function                  

                          mapping 

 In math, “mapping” one function onto 

another used to graphically track the 

cumulative impact of many “steps” 

 

 can be used for environmental science and 

management questions to stimulate thought 

and discussion  



Function mapping, generic 

• Using some familiar, linear functions 
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Arrow heads indicate larger values,  
regardless of what direction they point 

Slope is price of gas 
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Function mapping, generic 

• Using some familiar, linear functions 

• Rotate 
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Function mapping, generic 

• Using some familiar, linear functions 

• Rotate, align, and join graphs 
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Function mapping, generic 

• Using some familiar, linear functions 

• Rotate, align, and join graphs 

• Map outcomes: backward, forward, or conditional 
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Function mapping, generic 

• Using some familiar, linear functions 

• Rotate, align, and join graphs 

• Map outcomes: backward, forward, or conditional 
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Function mapping, generic 

• Using some familiar, linear functions 

• Rotate, align, and join graphs 

• Map outcomes: backward, forward, or conditional 
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Function mapping, generic 

• Functions can take any form 

• More “steps” can be added 

• Functions can come from 

– Empirical observations 

– Expert judgment 

– Simple correlations 

– Complex models 

• Uncertainty can be included 
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Uses 
 Discussion tool 

 

 Collective drawing as a way to talk across 

disciplines and stakeholder groups 
 

 Finding the “weak link” where more 

knowledge is needed 
 

 Finding targets for management  

   and indicators of success 
 

 Some axes are easier to manage than others 

 Some axes are easier to monitor than others 

 Selecting monitoring indicators in a causative 

path can be more powerful than statistical 

indicators 



The goal, Lake Erie hypoxia 
• Connection between 

nutrient load and hypoxic 
area 
– measures of variability 

• What controls nutrient load 

– Wetland area 

– Rain fall 

– Other things too… 

• Effects on fish 

– Discussions show  this 
relationship is 
particularly uncertain 

• Map! 
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The goal, Lake Erie hypoxia 
• Map variability effects 
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The goal, Lake Erie hypoxia 
• Map variability effects 

• Map wet vs. dry year 
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The goal, Lake Erie hypoxia 
• Map variability effects 

• Map wet vs. dry year 

• Map alternative fish 
response functions 
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The goal, Lake Erie hypoxia 
• Map variability effects 

• Map wet vs. dry year 

• Map alternative fish 
response functions 

• Explore non-linear effects 
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Three models 
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Length:  241 miles 
Breadth:  57 miles  
Average Depth:  19 m 
Maximum Depth: 64 m 
Volume: 116 cubic miles  
Shoreline Length: 871 miles 
Water Surface Area: 9,910 square miles 
Watershed: 30,140 square miles 
Flushing Time: 2.6 years  
Population: 10.5 million U.S.  
       1.9 million Canada  

Lake Erie: 
Southern most, warmest, and 
most productive Great Lake 

“Walleye Capital of the World” 



What are 

 HABs? 

(Harmful algal blooms) 
 

Hypoxia?  

(aka, the dead zone) 
 

Fish?  

(fun to watch, good to eat) 

 



Massive 2011 Toxic Bloom 



Scavia et al. (in press) 

Western Basin Algal Booms 
Decrease through the mid-1990s 

  Then a resurgence 



 

  
Air temperature, winds, length of season 

  
Algal production and settling 

– P supply 
– Length of season 

  

What Matters to Algal Blooms? 



Wind 

Upper warm, well 
mixed epilimnion 

Lower colder, poorly 
mixed hypolimnion 

thermocline 

Radiant energy 

Sedimentation of 
Organic Matter 

Decomposing organic 
matter consumes O2 

Oxygen 
Flux 

Well 
Mixed 

Stratified 

Hypoxia = 
“Dead Zones” 

Temperature 



Special Physical Characteristics 



Thinner Bottom Layer? 

 

=> Less O2 
Available 



 

Thickness of Central Basin Bottom Layer 
Air temperature, winds, length of season 

Organic Matter Flux to the Bottom 
Algal production and settling 

– P supply 
– Length of season 

  

What Matters to Hypoxia? 



Central Basin anoxia over time
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Increased through 1970s (phosphorus loading) 
Decreased following GLWQA-based clean-up 

Classic Success Story 



Central Basin Hypoxia (DO< 2 mg/l) 
 

Downward trend continued through the mid-1990s 
   

Then a resurgence 

Zhou et al. 2012 
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Three models 
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Stumpf et al. 2012 



Three models 
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Conservation practices 
Non-structural 

34 



Conservation practices 
Structural 

35 



Conservation practices 
Land retirement programs 

36 



Conservation practices 
Nutrient Management Plans 

37 



High-resolution SWAT model the 
Sandusky Watershed 

I. Daloglu 



Observed DRP Load 
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Baseline 

Representative :  
- Tillage practices 
- Fertilizer inputs 
- Crop choices 
- Fertilizer timing 
- Soil P accumulation 

in topsoil 
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Han and Allan 2010 

How about fertilizer use trends? 
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Fertilizer application rate scenario: 
Little impact on trend 
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Tillage practices scenario: 
Increased conservation tillage 
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Tillage practices scenario: 
Appears to have some impact 
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Is this because of the P 
accumulation at topsoil? 



Surface application of P fertilizer and manure 
Fertilizer application exceeding crop needs 

Adoption of conservation tillage 
Soil stratification 

Is this because of the P 
accumulation at topsoil? 
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Modified topsoil SRP: runoff  concentration ratio in 
the SWAT model 
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But … 
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Random weather scenario 
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Reversed weather scenario 

Weather matters, but interacts 
with land-based conditions 



Simulated SRP Load  
Watershed appears 
more vulnerable to 
weather impacts in 
recent years. 
 
Soil P accumulation 
and tillage and 
fertilizing practices 
appear to underlie the 
weather driver. 
 
Change in overall 
fertilizer rates shift 
load but do not seem 
to drive the pattern. 
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Three models 
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y = 0.0264x - 71.129 
R² = 0.1223 

y = -0.0109x + 16.977 
R² = 0.0363 
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D. Beletsky et al 

No clear evidence through 2005 

Rucinski et al. 2010 



Water Column Oxygen Depletion Rate 

Rucinski, et al 2010 



Rucinski et al 2010 

DRP Load 

O2 depletion rate 

Water Column Oxygen Depletion Rate 



Build Mixing Model 

Hypolimnion 

Epilimnion 

Diffusion 

WCOD 

SOD Model 

 

 

 

 

 

 

Data 

2005 

Rucinski et al. 2010 



Rucinski et al. 2013 

Eutrophication Model 



Model 
Calibration 
 
 Observations 
 
 Model 

Rucinski et al. 2013 



Model-derived Response Curve  
Envelop encompasses interannual weather variability 

46% reduction 

Scavia et al. in review 



Model-derived Response Curve  
Based on Dissolved Reactive Phosphorus (DRP) 

78% reduction 

Scavia et al. in review 



Three models 
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Hypoxia duration (days)
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Vertical Distributions under Strong Hypoxia 
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Oxy-thermal Squeeze 
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Problem Statement 

Major habitat degradation 

 Riparian development / 
urbanization 

 Industry and associated 
pollutants 

 Dredging and channel 
modification 

 Wetlands loss 

 Exotic species 
 

Loss of habitat 

 Removed, inaccessible, 
disconnected 



Habitat Loss in the St. Clair –Detroit 

Rivers System 



1982 1815 

Habitat Loss in the St. Clair –Detroit 

Rivers System 

Lost 97% 

of 

coastal 

wetlands 



From Bouckaert 2013 
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Four goals 

 An organizing method for scientific 

information 

 

 Both in lake and external loading changes 

matter 

 

 Form of phosphorus matters 

 

 Multiple causes and multiple effects must be 

considered to understand the system 


