GLOBAL WATER ISSUES

Professor Joan B. Rose rosejo@msu.edu Homer Nowlin Chair

Global trends in the era of the Anthropocene

- Urbanization
- Population Growth
- Regional Growth
- Travel and Tourism
- Global Corporate Growth
- Global Food Market
- Water Recycling, Reuse

THE CHANGING LANDSCAPE IS CONTRIBUTING TO THE RISK

Cultivated areas of the world. Brown regions

indicate areas in which at least 30% of the landscape is cultivated. Reproduced from the Millennium Ecosystem Assessment 2005 (http://www.MAweb.org), UNEP.

Loss of wetlands (km²) from 1950s to 1990s in the US

Verhoeven et al. TRENDS in Ecology and Evolution Vol.21 No.2 February 2006

Billions lack effective sewage treatment

Distribution of the 1.5 billion people by continent whose sewage is discharged without treatment

44% of the World's global population (7 billion people) lives within 150 km (93 miles) of the coastline (that is 3 billion people who flush or dispose daily and send fecal pollution into the environment and eventually into waterways). The world's rivers (ten of the longest rivers = 55,734 km or 34,629 miles) are so badly affected by human activity that the water security of 5 billion people are impacted.

3.9 Billion People Projected to Live Under Severe Water Stress by 2050

Environmental Outlook Baseline – IMAGE suite models, PBL, 2011

Waterborne Diseases are a global problem

Rotavirus mortality rate in children younger than 5 years, 2013

Old & new pathogens threaten human health around the world

Sustainable Development Goals

At the United Nations Sustainable Development Summit on 25 September 2015, world leaders adopted the 2030 Agenda for Sustainable Development, which includes a set of 17 Sustainable Development Goals (SDGs) to end poverty, fight inequality and injustice, and tackle climate change by 2030.

THREATS TO THE COASTAL GL Sewage; Combine sewer overflows Storm water; non-point source pollution Inadequate Infrastructure Invasive species Algal blooms Climate change

Michigan's challenges

*

Waterborne pathogens threaten human health in the Great Lakes region

How do we solve the water pollution problems and protect water quality?

Growth Based Methods: Common Fecal Indicator Organisms for measuring water quality

Filtering 100 ml water samples

Total coliforms

E.coli MPN and colonies

MPN

Water Diagnostics

- Polymerase chain reaction (PCR):
 - Small amount of DNA amplified in a thermal cycler
 - Amplified products are measured at the end point of amplification by agarose gel electrophoresis
- Quantitative PCR (qPCR):
 - Amplified PCR products are detected real-time during the early phases of the reaction
- DIGITAL DROPLET PCR
- Metagenomic tools:
- Understanding the Waterbiome

Water Diagnostics using digital droplet polymerase chain reaction

MPN cultivation TC/*E.coli* 24 hrs→ Rapid MPN genetic analyzer

Sources of *E.coli* and Pathogens

Waste water/Sewage

treatment

Septic systems

Combined Sewer Overflow

Agricultural run-off

Wildlife

Source Tracking Study

- Examine spatial distribution of *E. coli* and *B. theta* (Human) the M2 (Bovine) and pig2bac (Porcine) Markers in river systems under three flow conditions (baseflow, spring flow, summer flow)
- 2. Determine how key chemical, physical, environmental, hydrologic, and land use variables are linked to river water quality

Sampling

Baseflow (October 2010) Spring thaw (March 2011) Early summer rain (June 2011)

64 River systems

84% Lower Peninsula drainage area

Improved Water Quality Diagnostics source tracking at large scale

The distribution of the human sewage marker *Bacteroides*

- Increasing *B. theta* related to more septic tanks
- More E.coli related to more total phosphorous and increasing stream temperature

What did we learn?

- New microbial source-tracking tools elucidate important nonpoint sources of water quality degradation and potential need for further investigation of human health risks at large scales
- Pollution arising from septic system discharges likely more important than previously realized
- Identifying sources and providing reference levels for water quality provides a basis to assess water quality trends and remediate degraded areas
- While transport was linked to rain, changes in concentrations were not as clearly determine.

Significant Knowledge Gaps Exist for Septics

05/05/2009 **OUTSIDE** INSIDE Photos courtesy of Berry-Eaton Health Department

Agricultural Environments

SLIDE PROVIDED BY DR. JEANETTE THURSTON, ARS, NEBRASKA

FRESH WATER RESOURCES

Quality/Quantity issues

Drinking

Recommendations

- To achieve an understanding of water quality, fresh water resources and "Safe Water".
 - Use new water diagnostic molecular tools
 - Address the distribution of fecal pollution and sources under different land use and climate regimes at regional scales
 - Use sampling strategies to understand large scale processes.
 - Examine at smaller scale best management strategies

Thank You!

Any Questions??

Major contributors:

- Dr. Marc Verhougstraete,
- Dr. Sherry Martin,
- Dr. Anthony Kendall,
- Dr. David Hyndman,
- Dr. Tiong Aw,
- Mr. Matthew Flood

Michigan Corn Marketing Program

