Agricultural Phosphorus and Lake Erie perspectives from between the land and lake

Laura Johnson

Algal blooms were prevalent in the 1960s and 1970s and the lake appeared to recover in the early 1990s

Scavia et al. 2014, JGLR

Other Great Lakes blooms

Saginaw Bay

Heidelberg Tributary Loading Program

Sampling began in 1974 in the Maumee and Sandusky

Each station paired with a USGS gage

Goal is to quantify watershed loads

09/03/2011 (DOY=246)

2011

08/30/2012 (DOY=243)

The size of the bloom is related to Maumee River phosphorus exports from March - July

Stumpf et al., 2016 JGLR

*note, there is no relationship with TN, NO₃-, or TKN

Trends in Total Phosphorus

Lake Erie Total Phosphorus Load 1967-2013

Data from Dr. David Dolan and Matthew Maccoux

Maumee is the largest tributary to any of the Great Lakes

Maumee River trends

Total Phosphorus
Annual Flow-Weighted Mean Concentration

Dissolved Reactive Phosphorus

Annual Flow-Weighted Mean Concentration

Nitrate-N
Annual Flow-Weighted Mean Concentration

Total Kjeldahl Nitrogen
Annual Flow-Weighted Mean Concentration

Why is dissolved P increasing?

Is soil P high indicating over application of fertilizer or manure?

From Vadas et al. 2005

Ohio Phosphorus Taskforce II report

Phosphorus input budget

Scavia et al. 2014

Soil test P at varying depths across the Sandusky River watershed

- Top 1" is 40% higher than 0-8"
- If we reduced the top 2" to the mean of the 8" core, we'd reduce the risk for runoff by 28%

Evidence of macropore tile drain flow

Data from Doug Smith, USDA-ARS
St. Joseph River watershed

Tile drain flow peaked with surface flow at in a May 2011 storm

- >80% of dissolved P load from tile drainage
- Losses are only ~1% of inputs
- Soil phosphorus is at recommended levels
- Soil phosphorus must be in the wrong place and recommended STP may be too high!

Follow the 4Rs

- Right rate- get close to a soil test of 15ppm
- Right place- get it off the surface
 - moldboard plow if surface STP high
- Right time- not before rain or on frozen ground
- Right source- less soluble the better!

Conclusions

 The return of blooms to Lake Erie corresponds to an almost 2-fold increase in dissolved phosphorus concentrations from agricultural watersheds

- Dissolved P in Lake Erie watersheds comes from current agricultural practices → commercial P fertilizer application, rotational no-till
 - To reduce current loads efforts should be focused on reducing P stratification and nutrient management
 - To prevent legacy P problems, efforts should be focused on better management and application of manure

Heidelberg Tributary Loading Program – Current Sponsors

Sponsors of Current Research Projects

Great Lakes

For more information visit:

http://www.NCWQR.org

Or contact me at ljohnson@heidelberg.edu

Questions?

LAKE ERIE ALGAE.COM